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Objetivos

� Estudios experimentales: suelo

� Modelo térmico del suelo Buenos Aires T(z, t)

� Tubos enterrados

� Modelo de intercambio de calor suelo - aire

� Validación de modelo y aplicación a un caso real

� Potencialidad energética – La Tierra como  

acondicionador natural  de ambientes
3

Incremento de las temperaturas 
medias globales de la Tierra y los 
Océanos entre 1880-2010
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Referencia: NASA, Goddard Institute for Space Studies (GISS).

≈ (2 ± 0,2) ⁰C/siglo
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Temperaturas globales y contenido 
de CO2

T (°C)CO2 (ppm)

t (año)

Referencia: National Oceanic & Atmospheric Administration, NOAA, USA. 
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GEI - Contribuciones
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Usos de la energía en Argentina

7Referencia: Secretaria de Energía de la Nación (2010), http://energia3.mecon.gov.ar.

Alrededor del 58% de la energía de uso 
residencial, comercial y público o sea el 
18% del total se usa en calefacción o aire 
acondicionado.

Uso de la energía residencial en 
EE.UU. 2001

En EE.UU. 

Alrededor del 
50% de la 
energía de uso 
residencial se 
usa en 
calefacción
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Uso de la energía residencial en la EU 
1998

En Europa

Alrededor del 
57% de la 
energía de uso 
residencial se 
usa en 
calefacción
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1,5 millón de equipos de refrigeración vendidos, 
2005 en Argentina

Referencia: Secretaria de Energía de la Nación, http://energia3.mecon.gov.ar.

La Nación - Martes 20 de noviembre de 2007 |
Cerca de un millón de acondicionadores de aire 
habrán sido vendidos en el país durante todo 
2007. Ello implica una suba de casi el 4% en el 
consumo eléctrico total, según informó la 
Fundación para el Desarrollo Eléctrico (Fundelec) 
(…). 
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Cuerpo del trabajo 

� Estudio teórico–experimental de ondas de calor

� suelo

� Modelo de intercambio de calor suelo-aire en tubos 

enterrados 

� Verificación con un sistema real de tubos enterrados
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Conducción - Ley de Fourier 
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Ecuación de difusión del calor  T(z,t)
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Ley de Fourier – Ecuación del Calor
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Ondas de calor en 1D
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Estudio de Ondas de Calor en una 

Barra de Cobre 
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Interruptor

Termómetros conectados a 

una PC

Calefactor (soldador)

Barra metálica

Fuente de 

Potencial

Interfase

Arreglo experimental: Barra de Cobre

Aislante térmico

Interruptor
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Método Ajuste
(datos medidos - expresión teórica)
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Análisis del ajuste de datos al modelo
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Análisis del ajuste de datos al modelo
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Análisis del ajuste de datos al modelo
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Método de Atenuación 

23
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Resultados obtenidos (Cu)

Coeficiente de difusividad 
térmica (k)

Experimental 
(m2/sx10-6)

Tabulado Cu puro 
(m2/sx10-6)

Método de Ajuste 128 ± 13

113Método de Atenuación 105 ± 2

Método de Desfasaje 105 ± 3

Mejor valor de k 106 ± 2 113 (≈107)

25

Conclusiones Parciales

El comportamiento cualitativo es bien descripto 

por el modelo (atenuación y desfasaje).

Se observa que el modelo  reproduce bien los 

datos medidos.

Los k (difusividad) obtenidos con los tres 

métodos son consistentes con el valor 

tabulado. 26
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Estudio de Ondas de Calor 

en el Suelo

27

Arreglo experimental:
Propiedades térmicas del suelo (Bs. As.)

Suelo

Termómetros
conectados 
a una PCz

Profund.

Interfase
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31

Ondas de Calor del Suelo
Resultados experimentales
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Método de Desfasaje
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Resultados obtenidos

Coeficiente de 
difusividad térmica 

(k)

Experimental 
(m2/sx10-6)

Tabulado
(m2/sx10-6)

UNSAM INTI Arcilla Arena

Método de 
atenuación

0,44 ± 0,03 0,45 ± 0,04
0,26 - 0,4 0,296 - 0,521

Método de 
desfasaje

0,4 ± 0,1 0,33 ± 0,04

Mejor valor de k 0,44 ± 0,03 0,39 ± 0,06 0,26 - 0,4 0,296 - 0,521
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Temperaturas de Buenos Aires
Ciclo Anual
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Referencia: Servicio Meteorológico Nacional (SMN). 35

Método de Ajuste. SMN 
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Temperaturas Tierra - Buenos Aires
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A una profundidad ≈ 1 - 5 m, la T del suelo es muy próxima a la T de confort todo el año.
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Conclusiones Parciales

A una profundidad del orden de 4 m se produce una 

inversión de la temperatura (profundidad ideal para 

tubos enterrados).

A partir de los 2 m la temperatura es 

aceptablemente estable y más accesible.

39

Modelo 1 - Temperatura diarias del suelo
usando Diferencias Finitas  T(z,t)
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Segunda Ley de la 
Termodinámica� Varios enunciados equivalentes. 

Uno de ellos: el calor siempre fluye de la fuente 
caliente a la fría.
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Avance de T en el tiempo 
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Estable

43
El parámetro       debe ser menor que 
½.
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Si       es mayor que ½ se viola el 2do principio de la 
termodinámica y el proceso numérico se torna inestable.
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Temperaturas medidas y calculadas 
con diferencias finitas
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T medidas T calculadas 

Ondas de Calor del Suelo
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Predicción teórica de temperaturas 
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Conclusiones Parciales

El modelo se ajusta a los valores medidos de 

las T en función del t a diferentes 

profundidades. 

El modelo es adecuado para predecir las T a 

diferentes profundidades del suelo, época del 

año y t.
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La Tierra como Acondicionador de 

Aire Natural

49

Efecto conocido y usado desde la 
antigüedad

Ruinas de Quilmes - siglo XV. 
Valle Calchaquí, Tucumán, Argentina 
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Efecto conocido y usado desde la 
antigüedad

Fuente: http://www.clarin.com/suplementos/viajes/2008/03/16/v-01629375.htm

� Pozo 10 x 10 m

� 8 m profundidad

� Tinterior ≈ 20 - 22 °C
todo el año.

� Texterior ≈ 30 - 40 ºC

Ciudad de Gharyan, 60 km al sur de Trípoli, Libia

51

Casas subterráneas - Cuevas

Coober Pedy, Australia Meridional

Gharyan, Libia 
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Casas bajo tierra modernas

The Hills golf course 
near Arrowtown New 

Zealand (2009)

Earth-Sheltered 
Houses by Rob 

Roy EE.UU (2007)
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Vivienda con tubos enterrados 
Acondicionamiento Térmico
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Acondicionamiento térmico 
de interiores

55

CasaE de Basf – Tortuguitas, Buenos 
Aires, Argentina

COLABORACIÓN

UNSAM- INTI –
ENARGAS – BASF

Fuente: www.lacasae.com.ar 56



Leila Mora Iannelli

0

5

10

15

20

25

30

35

0 7 14 21 28 35 42 49 

T
 (

°C
)

t (días)

T_Entrada (°C)

T_Salida (°C)

T_Salida= 21,5 ± 1,5 °C

0

5

10

15

20

25

30

35

0 7 14 21 28 35 42 49 

T
 (

°C
)

t (días)

T_Entrada (°C)

T_Salida (°C)

T_Salida= 21,5 ± 1,5 °C

Experimento CasaE de BASFExperimento CasaE de BASF

T=25 ºC

T=18 ºC

Las temperaturas de salida del tubo están siempre en la zona de confort (18 ºC a 25 
ºC)!!! 57

Referencia: www.lacasae.com.ar

Temperatura Entrada/Salida CasaE
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Modelo 2- Sistema Intercambio de 
Calor Suelo – Aire 

suelotubo.convtotal ℜ+ℜ+ℜ=ℜ δδδδ

T2

.convℜ tuboℜ
sueloℜ

T’ T’’T1
Aire

Suelo
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Modelo del Sistema Intercambio de 
Calor Suelo – Aire 
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Modelo del Sistema Intercambio de 
Calor Suelo – Aire (cont.)
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Tubo en un medio finito (1)
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Modelo del Sistema Intercambio de 
Calor Suelo – Aire (cont.)
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Temperatura del aire, después de viajar un longitud x de tubo
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Modelo T salida del tubo
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Material del tubo

Modelo
λλλλconv
(m)

λλλλtubo
(m)

λλλλsuelo
(m)

λλλλtotal
(m)

λλλλ(1)

0,7 4,88
31,85 37,43

λλλλ(2) 25,87 31,45

Material tubo usado: Policloruro de Vinilo (PVC)
Partículas de plata

Material_tubo 
λtubo

(m)
λtotal

(m)

Aluminio 0,00643 32,5

Bronce 0,00892 32,5

Cobre 0,00356 32,5

Plomo 0,03847 32,6
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Modelo Largo del tubo
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Flujo de aire a la salida con T prácticamente constante y 

muy próxima a la de “confort”

Se obtuvo un buen ajuste entre las mediciones de T del 

aire a la salida del tubo y las calculadas teóricamente.

Este método permite calcular la longitud optima del tubo

Ejemplo de sistema Eficiente del uso de la energía

Uso de la energía     GEI

Conclusiones Parciales
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Factor de ahorro de energía en el 
acondicionamiento térmico
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Potenciales ahorros de Energía
DGD_R, DGD_C y DGDtotal

Buenos Aires
2010 2011 2012 Promedio Porcentaje

DGD_R 259 205 289 251 21%

DGD_C 959 1000 951 970 79%

DGDtotal 1218 1205 1240 1221 100%

Exterior Tubos Factor de Ahorro

DGD_R 56 5,5 90%

DGD_C 1002 332 67%

DGDtotal 1058 338 68%

16/03/12 hasta 23/11/12

Calefacción

Refrigeració
n

Refrigeració
n Calefacción

Ahorro
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Conclusiones Finales

La energía geotérmica ofrece una importante 

oportunidad para disminuir los consumos energéticos

Importaciones y emisiones de GEI

En la zona central de Argentina, puede servir tanto 

para: la calefacción en invierno como para la 

refrigeración en verano
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““La energLa energíía ma máás limpia y s limpia y 
barata, es la que nunca barata, es la que nunca 

se usase usa””
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